THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 2050A Tutorial 6

- 1. Show that $\lim_{x\to 0} \cos(1/x)$ does not exist.
- 2. Suppose $f, g : \mathbb{R} \to \mathbb{R}$ and $x_0, y_0, l \in \mathbb{R}$. If
 - (i) $\lim_{x \to x_0} g(x) = y_0$ and $\lim_{y \to y_0} f(y) = l$; and
 - (ii) there exists $\delta > 0$ such that $g(x) \neq y_0$ for any x satisfying $0 < |x x_0| < \delta$,

show that $\lim_{x \to x_0} f(g(x)) = l$. Can we drop condition (ii)?

3. Prove the **Squeeze Theorem**: Let $A \subseteq \mathbb{R}$, let $f, g, h : A \to \mathbb{R}$, and let $c \in \mathbb{R}$ be a cluster point of A. If

$$f(x) \le g(x) \le h(x)$$
 for all $x \in A, x \ne c$,

and

$$\lim_{x \to c} f(x) = L = \lim_{x \to c} h(x),$$

show that $\lim_{x \to c} g(x) = L$.

- 4. Let $A \subseteq \mathbb{R}$, $f : A \to \mathbb{R}$, and c be a cluster point of both of the sets $A \cap (c, \infty)$ and $A \cap (-\infty, c)$. Show that $\lim_{x \to c} f(x) = L$ if and only if $\lim_{x \to c^+} f(x) = L = \lim_{x \to c^-} f(x)$.
- 5. (a) State the definition of limits at infinity.
 - (b) Evaluate $\lim_{x \to \infty} \frac{\sqrt{x} x}{\sqrt{x} + x}$ (if exist) by definition.
- 6. Let $f:(0,\infty)\to\mathbb{R}$. Prove that $\lim_{x\to\infty}f(x)=L$ if and only if $\lim_{x\to 0^+}f(1/x)=L$.